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This document provides additional details regarding the 3DV 2024 paper “Revisiting Depth Completion from a Stereo
Matching Perspective for Cross-domain Generalization”.

1. Implementation details
In this section, we report additional details concerning our experiments.

1.1. Stereo matching networks

We now describe the training protocol adopted for stereo architectures involved in our experiments. In this phase, none of
the models sees any virtual patterned image – i.e., they are trained only on the original, vanilla stereo pairs.
• RAFT-Stereo [8]. We trained this stereo network using Sceneflow [9] synthetic dataset, following the original training

protocol.

• PSMNet [1]. We trained PSMNet using Sceneflow [9], following the original training protocol.

• GMStereo [18], IGEV-Stereo [17]. We use authors’ weights to test the networks with our framework.

• SDC [2] – stereo module (CCVNorm [15]). We trained CCVNorm on [9] using the PSMNet training protocol.

• SDC [2] – view synthesis module. Following the authors’ guidelines, we employed a U-Net [13] style network with a
double encoder and a single decoder. The first encoder processes context RGB image and produces multi-scale features
Fs

rgb. The second encoder processes sparse warped RGB images and produces multi-scale features Fs
warp. Then, Fs

rgb and
Fs

warp are concatenated at each scale in the channel dimension and fed to the decoder that generates a dense synthetic right
image. We trained the image synthesizer network for 15 epochs on synthetic data [9], using a batch size of 2 and a learning
rate of 0.0001. We used AdamW as the optimizer and applied a OneCycle schedule. We generate sparse points randomly
sampling 1% of groundtruth data. We also employ RGB augmentation (i.e., color jittering, channels shuffling, histogram
equalization) and spatial augmentation (i.e., horizontal flip, random 512× 384 crop). Following [2], we employed the Lsdc
loss:

Lsdc = Lphoto + Lvgg (1)

Lsdc loss is a sum of two terms: Lphoto (Eq. 2) regularizes the synthetic image Is with the groundtruth real image Î , while
Lvgg (Eq. 3) indirectly regularizes Is by enforcing its features representation Fs to be close to features representation F̂ of
Î . Features Fs and F̂ are computed using a pretrained VGG.
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Where λ = 0.85 is a hyperparameter that weight structure similarity loss and L1 loss.

Lvgg = E
��

Fs − F̂
�2

�
(3)

Differently from SDC’s protocol, we employed a L2 loss instead of KL-divergence loss for Lvgg term since we encountered
numerical stability issues using original loss.

• OpenCV SGM [6]. To conclude, we report the parameters used for OpenCV SGM algorithm. We set P1, P2, BlockSize
to 1176, 4704 and 16 respectively. We apply background interpolation [10] to fill invalid disparity values.

1.2. Depth completion networks

We now describe in detail the training protocol adopted for the conventional completion networks used in our evaluation.
• CompletionFormer [19]. At first, using the authors’ training protocol, we train the network using synthetic data [9].

Specifically, we train in depth domain for 20 epochs, sampling 1% random points from the groundtruth to generate sparse
measurements. The learning rate was set to 0.001 and batch size to 4. We set a depth cap to 90 meters for numerical
stability. In addition to the authors’ proposed data augmentations, we used 512 × 384 random crop. Starting from a
synthetic checkpoint, we also fine-tuned the network on real indoor [11] and outdoor [14] datasets. Specifically, on NYU
[11] we trained CompletionFormer for 20 epochs with batch size 16, a learning rate set to 0.0001 and a depth clamp at
10 meters. Five hundred depth seeds were sampled randomly from groundtruth. We trained on full image size, discarding
random crops. Instead, on KITTI DC [14] we trained for 10 epochs with batch size 4, a learning rate set to 0.0001 and a
depth clamp at 90 meters. We used the raw LiDAR data as the depth seed source. We trained on full image size, discarding
random crops. Finally, for training on KITTI DC and NYU from scratch, we used the original authors’ weights.

• NLSPN [12] and SpAgNet [4]. Starting from the authors’ proposed training protocols, we train the network on synthetic
data [9] using Adam for 20 epochs at batch size 6 and a learning rate set to 0.001. We generated deep seeds randomly
sampling 1% of groundtruth data. As in [19], we set a depth cap at 90 meters, and used random 512× 384 crop in addition
to the original data augmentation protocol. From synthetic pre-training, we fine tuned in real indoor [11] and outdoor
[14] scenarios. On NYU [11], we trained those networks for 20 epochs at batch size 20, a learning rate set to 0.0001
and a depth cap at 10 meters. We sampled 500 depth seed from groundtruth as sparse measurements. We trained on
full image size, discarding random crops. Instead, on KITTI DC [14] we apply the same parameters described before for
CompletionFormer. Finally, for training on KITTI DC and NYU from scratch, we used original authors’ weights. When
evaluating with NLSPN [12] on DDAD [5], we downsampled at half resolution due to memory constraints, then after
upsampling the predicted depth map, we evaluated at full resolution.

• VPP4DC. As mentioned in the main paper, we selected RAFT-Stereo [8] as the reference stereo network in our framework.
Starting from the original training protocol, we trained on KITTI DC [14] from scratch for 10 epochs with batch size 4
and a learning rate of 0.0001. As done before, we applied a depth clamp at 90 meters. To save memory and time, we
used 608 × 240 random crop in addition to spatial augmentation (i.e., horizontal flip) and RGB augmentation (i.e., color
jittering, channels shuffling, histogram equalization). On the same dataset, we fine-tuned from Sceneflow [9] pre-train
using the same configuration aforementioned, except for the learning rate set to 0.00001. Instead, on NYU [11], we trained
from scratch for 20 epochs at batch size 12, a learning rate of 0.0001 and a depth clamp at 10 meters. Five hundred points
were randomly sampled from groundtruth as depth seeds. We trained on full image size, discarding random crops. On
the same dataset, we fine-tuned from Sceneflow [9] pre-train using the same configuration aforementioned, except for the
learning rate set to 0.00001.

All depth completion training and fine tuning use a L12 loss:

L12 = E [|zr − ẑr|] + E
h
(zr − ẑr)

2
i

(4)

For traditional depth completion method SCPU [7], we set the hyper parameter of maximum depth equal to 10 meters for
NYU [11] and VOID, keeping the original hyperparameters for KITTI DC [14]. Instead, for DDAD [5], we set maximum
depth equal to 250 meters. Finally, for RAL [20] depth completion method, we disabled internal occlusion system as outdoors
methods are already filtered using [3]. Also, we deploy small changes to execute the algorithm to other datasets rather than
KITTI DC [14]: we removed depth clamps and hardcoded depth map shape.
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Network Test domain RMSE (m) MAE (m)
SCPU [7] NYU [11] 0.544 0.240
RAL [20] NYU [11] 0.495 0.237
VPP4DC [6] (Ours) NYU [11] 0.321 0.129
SCPU [7] VOID500 [16] 1.749 1.347
RAL [20] VOID500 [16] 1.129 0.481
VPP4DC [6] (Ours) VOID500 [16] 0.707 0.260
SCPU [7] KITTI DC [14] 1.591 0.329
RAL [20] KITTI DC [14] 1.571 0.345
VPP4DC [6] (Ours) KITTI DC [14] 3.442 0.835
SCPU [7] DDAD [5] 29.144 14.389
RAL [20] DDAD [5] 7.383 1.579
VPP4DC* [6] (Ours) DDAD [5] 8.763 2.254

Table I. Capabilities of traditional algorithms in LiDAR-only depth completion. The adaptive patch approach is turned off in VPP4DC
to ignore the RGB context information. * With a baseline of 0.22 meters and maximum disparity of 256 pixels.

RAFT-Stereo[8] IGEV-Stereo[17]
Test domain RMSE (m) MAE (m) RMSE (m) MAE (m)

With context NYU [11] 0.247 0.077 0.324 0.107
Without context NYU [11] 0.343 0.151 0.277 0.132

With context KITTI DC [14] 1.609 0.413 2.258 0.604
Without context KITTI DC [14] 5.567 1.448 2.430 0.700

Table II. Capabilities of context-aware stereo networks without context. As expected, additional information from the RGB context
image helps reduce errors.

2. Additional experiments
We investigate the impact of using the RGB contextual information on the performance of traditional stereo matchers such
as SGM [6] and context-aware deep learning stereo matchers [8, 17].

LiDAR-only depth completion using traditional stereo matching. We now assess the performance of VPP4DC using
a popular traditional stereo algorithm (i.e., OpenCV-SGM [6]) with respect to other handcrafted depth completion methods
[7, 20]. Table I shows the accuracy achieved on four different indoor and outdoor datasets (i.e., NYU [11], VOID [16],
KITTI DC [14], DDAD [5]). Not surprisingly, RAL and SCPU outperform VPP4DC with KITTI DC evaluation since these
traditional algorithms are conceived ad-hoc for this dataset. However, moving to a similar outdoor dataset such as DDAD,
SCPU accuracy drops compared to other methods: this evidence proves that SCPU is too specialized on the KITTI DC dataset.
RAL is the absolute winner, reducing by 30% the MAE error compared to the second-best method VPP4DC. Instead, when
facing challenging indoor datasets, VPP4DC outperforms all other traditional depth completion methods, showing a better
capability to handle these different domains.

Effects of context on context-aware stereo networks. Given a context-aware stereo matching network such as RAFT-
Stereo [8] or IGEV-Stereo [17], we ablate the impact of the RGB context feeding such networks with the real input image
or a black image as context. Table II shows the result of this experiment. As expected, the RGB image context is highly
beneficial for both networks – especially for RAFT-Stereo – and crucial for achieving the best results, as shown in Figure I.

3. Design choices: qualitative results
We show additional qualitative results about the proposed virtual projection method to demonstrate the effects of i) random
projection; ii) raw depth occlusion filtering; iii) left padding; iv) adaptive patch.
• (i) Uniform areas in RGB projection. Figure II shows a qualitative view of a KITTI DC [14] fictitious scene projected

using RGB projection (up) and random projection (bottom), respectively. RGB projection shows a large white uniform area
due to the massive direct light on the camera sensor. This uniform area propagates in the fictitious stereo pair with RGB
projection; consequently, the stereo pair is ambiguous. In contrast, Random projection does not rely on RGB information
to generate a fictitious stereo pair, inherently making ambiguous uniform areas distinctive.

• (ii) Artifacts on raw sparse depth map. When facing depth completion setups where the RGB camera and depth sensors
do not share the very same view, occlusions appear in the camera view’s sparse depth map. As shown in the top of Figure
III, when we fed this raw depth map to our virtual projection framework, repetitive patterns appeared: occlusions lead the
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Context Context aware Context unaware

NYU [11] RAFT-Stereo [8] IGEV-Stereo [17] RAFT-Stereo [8] IGEV-Stereo [17]

KITTI DC [14] RAFT-Stereo [8] IGEV-Stereo [17] RAFT-Stereo [8] IGEV-Stereo [17]

Figure I. Visual effects of RGB context on stereo networks. The RGB image allows the networks to recover better fine details not
available in the sparse fictitious images generated by our projection method.

Figure II. Qualitative view on uniform areas. RGB projection keeps uniform regions as such, while random projection makes them
distinctive.

stereo matching algorithm to match the same region (e.g., the right side of cyclist’s body) to multiple locations. However,
using the filtering technique [3] (Fig. III, bottom), the artifacts above vanish, and only the real matching region remains.

• (iii) Recovering out-of-image depth seeds using left padding. We qualitatively investigate the behaviour of RAFT-Stereo
[8] and OpenCV-SGM[6] stereo matchers when facing left padding. Figure IV shows the effects of left padding on the
stereo matchers above. In this particular indoor scenario [11], differences are less visible since there are only a few out-of-
border depth seeds. We argue that these scarce depth points add a marginal contribution to the dense depth reconstruction
process. Instead, in the outdoor scenario [14], we can appreciate a stronger recovery of out-of-border objects, such as the
road blue sign.

• (iv) Adaptive patch. Figure V shows the effects of the adaptive patch used for an outdoor scenario [14]. Given a context
image (Fig. V, left), our methodology shapes the original block-based patch (Fig. V, center) to a more appropriate
silhouette (Fig. V, right). Supported by the figure above and hyper-parameters ablation, we argue that this method helps to
preserve fine details that otherwise would have been lost.
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(a) (b) (c)

(d) (e) (f)

Filtered

Not filtered

Figure III. Qualitative effects of depth occlusion filtering. The different position between the RGB camera and depth sensor (a) yields
artifacts in virtual projection (b,c). Filtering out occluded points according to [3] (d) significantly softens the problem (e,f).

Context Without left padding With left padding

NYU [11] RAFT-Stereo [8] SGM [6] RAFT-Stereo [8] SGM [6]

KITTI DC [14] RAFT-Stereo [8] SGM [6] RAFT-Stereo [8] SGM [6]

Figure IV. Qualitative effects of left padding. Effects are less visible in indoor dataset [11], while they are more apparent in outdoor
scenarios [14]. Without left padding, stereo matchers struggle on left occluded objects (e.g., the blue road sign).
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Context [14] No adaptive window Adaptive window
Figure V. Qualitative effects of adaptive patch. Given a context image, our proposal adapts the patch to objects in the scene (e.g., the
tree at the center).

4. Virtual baseline study
In this section, we complement Fig. 7 in the main paper by adding a comparison between different virtual baselines in outdoor
datasets [5, 14]. In particular, we inspect the discrepancy between the virtual baseline used in DDAD [5] and the one used in
KITTIDC [14], – both acquired in a similar environment – in Fig. VI and VII. Firstly, we compare the depth distribution of
the two datasets in Fig. VI (a) for the near depth range – i.e., 0-10m. Supported by the distribution shown in the figure and
the fact that both datasets are acquired in similar conditions, we agree that both outdoor datasets share similar close-range
depth distributions. Then, we investigate the inverse close-depth function for both datasets in Fig. VI (b), using the focal
length given by the real camera and the optimal virtual baseline given by Fig. 7. Additionally, we plot the inverse close-depth
function for DDAD [5] with a larger virtual baseline, equal to 0.54m – i.e., the same virtual baseline of KITTIDC [14]. As
expected, the larger virtual baseline in [5] leads to a larger disparity range, even ∼3 times the maximum disparity registered
for KITTIDC [14] and ∼2 times the maximum disparity registered using the optimal virtual baseline. This extended range
might hinder a deep stereo model not used to deal with it, especially in the close-depth regions, such as the road surface just
under the camera.

(a) (b)
Figure VI. DDAD [5] virtual baseline study – near depth range. DDAD [5] and KITTIDC [14] share similar distribution of near range
depth values (a). A shorter baseline aligns the disparity range of DDAD [5] to the disparity range seen during training [9] (b).

However, a reduction in baseline leads intrinsically to higher errors, that are proportional to the square of the distance
between the camera and the objects. In Fig. VII (a) and Fig. VII (b) we analyze respectively the behavior of the inverse depth
function in far depth bound of KITTIDC [14] (i.e., 80-100m) and the one in far depth bound of DDAD [5] (i.e., 200-220m).
The former plot qualitatively shows that DDAD [5] resolution is higher than the one of KITTIDC [14], even with a shorter
baseline: this is due to the longer focal length used to acquire the former. The latter plot shows that an error of 1px in disparity
estimation equals more than 20 meters of depth error, even with a larger baseline. In conclusion, the virtual baseline is an
important hyperparameter that needs to be tuned precisely to achieve optimal performance on both near and far depth ranges.
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(a) (b)
Figure VII. DDAD [5] virtual baseline study – far depth range. Despite the shortened baseline, DDAD [5] maintains comparable
disparity resolution to KITTIDC [14], which employs a larger baseline (a). Notably, extended distances exhibit decreased accuracy, even
with a larger baseline (b).

5. Cross domain generalization: qualitative results
We conclude by showing some qualitative examples to confirm the benefits of our method in terms of cross domain general-
ization. In particular, we test the performance of networks v) trained on synthetic data [9] and tested on real scenarios [5, 16];
vi) trained or finetuned indoor [11] and tested outdoor [5]; vii) trained or finetuned outdoor [14] and tested indoor [16]. We
apply a 7× 7 dilation to sparse depth hints and sparse ground-truth for visualization purpose.
• v) From synthetic to real. Fig. VIII and Fig. IX show the performance of three depth completion networks [4, 12, 19]

compared to our proposal on both indoor [16] and outdoor [5] scenarios. Even if all the networks are trained on SceneFlow
[9] only, in Fig. VIII they manage to reconstruct the road plane. Nonetheless, our proposal outperforms others when dealing
with long distance details. Furthermore, in Fig. IX we show a challenging frame from [16] where depth hints are missing at
the top of the image. In this case only our method performs adequately for the scenario, yet being not capable of producing
meaningful depth values in the portion of the scene lacking any depth hints.

Context Depth hints Ground-truth

NLSPN [12] SpAgNet [4] CompletionFormer [19] VPP4DC (Ours)

MAE: 3.066m MAE: 5.496m MAE: 2.056m MAE: 1.625m
Figure VIII. Qualitative results – DDAD [5]. All networks are trained on SceneFlow [9].
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Context Depth hints Ground-truth

NLSPN [12] SpAgNet [4] CompletionFormer [19] VPP4DC (Ours)

MAE: 5.312m MAE: 6.049m MAE: 6.425m MAE: 0.123m
Figure IX. Qualitative results – VOID500 [16]. All networks are trained on SceneFlow [9].

• vi) From indoor to outdoor. When it comes to train on indoor data and run the model outdoor, significant domain
shift occurs. In Fig. X and Fig. XI we show examples on the DDAD dataset, using models trained on NYU only, or
pre-trained on SceneFlow and then fine-tuned on NYU, respectively. In the former case, NLSPN and CompletionFormer
produce decent results on the road surface, whereas SpAgNet completely fails at delivering any meaningful prediction.
Our approach instead predicts a quite structured depth map, with minor failures. When pre-training on SceneFlow, we
observe the opposite behavior: NLPSN and CompletionFormer seem unable to generalize to outdoor data, while SpAgNet
can produce some meaningful depth maps, yet far from being accurate. Finally, VPP4DC can improve the results even
further thanks to the pre-training process.

Context Depth hints Ground-truth

NLSPN [12] SpAgNet [4] CompletionFormer [19] VPP4DC (Ours)

MAE: 6.173m MAE: 24.238m MAE: 5.569m MAE: 3.027m
Figure X. Qualitative results – DDAD [5]. All networks are trained on NYU [11].
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Context Depth hints Ground-truth

NLSPN [12] SpAgNet [4] CompletionFormer [19] VPP4DC (Ours)

MAE: 799.379m MAE: 12.865m MAE: 21.278m MAE: 1.335m
Figure XI. Qualitative results – DDAD [5]. All networks are pretrained on SceneFlow [9] and fine-tuned on NYU [11].

• vii) From outdoor to indoor. Finally, we consider the case complementary to the previous one – i.e., with models trained
outdoor and tested indoor. In Fig. XII and Fig. XIII we show examples on the VOID dataset, using models trained on
KITTI only, or pre-trained on SceneFlow and then fine-tuned on KITTI, respectively. In the former case, NLSPN and
CompletionFormer completely fail, whereas SpAgNet can predict a depth map that is reasonable to some extent. Our
approach instead predicts very accurate results on regions covered by depth hints, yet failing where these are absent. When
pre-training on SceneFlow, NLPSN and CompletionFormer can improve their results, yet being far from the results yielded
by VPP4DC without any pre-training. Eventually, if SceneFlow pre-training takes place, our method can further improve
its results.

Context Depth hints Ground-truth

NLSPN [12] SpAgNet [4] CompletionFormer [19] VPP4DC (Ours)

MAE: 6.376m MAE: 5.774m MAE: 7.456m MAE: 0.211m
Figure XII. Qualitative results – VOID500 [16]. All networks are trained on KITTI [14].
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Context Depth hints Ground-truth

NLSPN [12] SpAgNet [4] CompletionFormer [19] VPP4DC (Ours)

MAE: 5.339m MAE: 5.938m MAE: 4.931m MAE: 0.094m
Figure XIII. Qualitative results – VOID500 [16]. All networks are pretrained on SceneFlow [9] and finetuned on KITTI [14].
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