
This paper has been accepted for publication at the
IEEE International Conference on 3D Vision (3DV), Davos, 2024. ©IEEE

Revisiting Depth Completion from a Stereo Matching Perspective
for Cross-domain Generalization

Luca Bartolomei∗,† Matteo Poggi∗,† Andrea Conti† Fabio Tosi† Stefano Mattoccia∗,†
∗Advanced Research Center on Electronic System (ARCES)
†Department of Computer Science and Engineering (DISI)

University of Bologna, Italy
{luca.bartolomei5, m.poggi, andrea.conti35, fabio.tosi5 stefano.mattoccia}@unibo.it

https://vppdc.github.io/

GT

(a) (d) (e) (f)(b)

VPP4DC (Ours)CompletionFormerNLSPNRGB image+500 hints points

(c)

SpAgNet

Figure 1. Synth-to-real generalization. Given an NYU Depth V2 [30] frame and 500 sparse depth points (a), our framework with RAFT-
Stereo [24] trained only on the Sceneflow [28] synthetic dataset (e) outperforms the generalization capability of state-of-the-art depth
completion networks NLSPN [31] (b), SpAgNet [14] (c), and CompletionFormer [60] (d) – all trained on the same synthetic dataset.

Abstract

This paper proposes a new framework for depth comple-
tion robust against domain-shifting issues. It exploits the
generalization capability of modern stereo networks to face
depth completion, by processing fictitious stereo pairs ob-
tained through a virtual pattern projection paradigm. Any
stereo network or traditional stereo matcher can be seam-
lessly plugged into our framework, allowing for the deploy-
ment of a virtual stereo setup that is future-proof against
advancement in the stereo field. Exhaustive experiments
on cross-domain generalization support our claims. Hence,
we argue that our framework can help depth completion to
reach new deployment scenarios.

1. Introduction
Perceiving depth is of utmost importance for several com-
puter vision tasks, such as autonomous driving, robotics,
and augmented reality, to name a few of them. Differ-
ent camera setups exist for this purpose in the literature,
ranging from single to multiple imaging systems, and deep
network approaches dominate these fields. An alternative
strategy to infer depth in practical applications relies on de-
ploying active depth sensors based on LiDAR or Time-of-
Flight technologies, despite they feature much lower reso-

lution than conventional cameras. To overcome the limited
depth density of active depth sensors, they are frequently
coupled with higher-resolution imaging devices in stereo
or monocular camera setups to achieve dense depth maps
at higher resolution. The monocular setup, consisting of
a conventional camera registered with an active depth sen-
sor, has received much attention recently due to the mini-
malist setup needed and the outstanding results achieved by
learning-based methods to tackle this task, known in the lit-
erature as depth completion. Despite these achievements,
state-of-the-art networks struggle with out-of-domain data
distribution, making their practical deployment challenging.
In fact, these networks are tightly constrained to the depth
sensor/data distribution and environments seen during train-
ing [18]. Nevertheless, increasing generalization robustness
has been often overlooked and consequently scarcely inves-
tigated in the literature, with most studies limiting the train-
ing and testing of depth completion solutions over a single,
very specific domain – either indoor [30] or outdoor [44].

Purposely, this paper aims to fill this gap by studying this
issue deeply and tackling it from a different perspective. In-
spired by the outstanding generalization capability of mod-
ern stereo networks [41, 49], we cast depth completion as if
it were a stereo problem through a depth-based virtual pat-
tern projection paradigm. In contrast to most depth comple-
tion approaches conceived to densify the input sparse depth
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seeds according to the image content and monocular cues
only, our strategy treats depth completion as a correspon-
dence problem through existing stereo matchers. This is
achieved by processing virtual stereo pairs characterized by
less domain-specific features, enabling much higher robust-
ness to out-of-domain issues.

Our main contributions can be summarized as follows:
• We cast depth completion as a virtual stereo correspon-

dence problem, where two appropriately patterned virtual
images enable us to face depth completion with robust
stereo-matching algorithms or networks.

• Extensive experimental results with multiple datasets and
networks demonstrate that our proposal vastly outper-
forms state-of-the-art concerning generalization capabil-
ity, as shown in Fig. 1, and performs comparably in-
domain.

2. Related Work
This section reviews the depth completion and stereo
matching literature since both relate to our proposal.

Depth Completion. Given a sparse and potentially
noisy depth map, gathered even from passive source [48],
depth completion aims to predict missing values. The inte-
gration of an RGB camera provides a promising solution to
address the challenges posed by pure sparse depth measure-
ments, leading to more robust and reliable results. A variety
of traditional methods tackle this task via interpolation [5],
stochastic models [36], morphological operators [22] or ge-
ometric models [61]. Earlier deep learning approaches used
convolutional neural networks (CNNs) [27], despite their
suboptimal performance with sparse inputs. Some efforts,
like [44], attempted to handle sparse measurements using
sparsity-invariant CNNs. However, more recent advance-
ments in guided spatial propagation-based networks have
shown better results. For example, [26] proposed a network
able to learn local affinities, which was further improved
by [7] and then by [31]. [60] enhanced the latter approach
using a jointly convolution-attention mechanism integrated
into the encoder-decoder architecture. Finally, regardless of
the works above, [11] exploits 3D geometric cues recasting
depth completion as a stereo matching problem. Their com-
plex framework consists of: i) an image inpainting network
to synthesize the missing stereo image by filling the warped
sparse RGB image using the reference RGB image as con-
text; ii) a depth-guided stereo matching network originally
proposed by [46]; iii) a depth refinement module. While
our research and [11] share some similarities, it is impor-
tant to highlight the key differences. In their work, the in-
painting module generates an image that may be ambiguous
in uniform regions and repetitive patterns. In contrast, our
approach focuses on extracting valuable information from
sparse depth points using a virtual stereo pair with highly
distinctive patterns. Additionally, the synthesis process it-

self is learned and thus suffers from a lack of generalization
across domains or when dealing with very sparse data. In-
stead, we leverage our virtual matching-friendly pattern to
transform depth points into the image modality efficiently.

Stereo Matching. Stereo matching aims at reconstruct-
ing a 2.5D scene from a rectified pair of images. Traditional
methods [38] rely on handcrafted algorithms, considering
local [54] and global information [3, 21, 39, 45, 51]. [17]
introduced a polynomial approximation method for efficient
yet accurate stereo matching. Recently, deep-learning so-
lutions [34] outperformed conventional stereo on standard
benchmarks [55]. Initially, neural networks replaced some
steps of the traditional pipeline. However, a paradigm shift
has occurred with the emergence of end-to-end approaches.
These approaches diverge based on their utilization of ei-
ther a 2D encoder-decoder architecture [23, 28, 35, 40, 53]
or a 3D architecture that relies on feature cost volumes
[6, 8, 20, 37, 56]. More recent works [24, 49], instead,
propose novel deep stereo networks that leverage the it-
erative refinement paradigm from the state-of-the-art op-
tical flow network RAFT [41], or rely on Vision Trans-
formers [50] to capture long-range contextual information.
Nevertheless, deep stereo methods often encounter chal-
lenges when estimating depth in unseen scenarios, and dif-
ferent methods have been proposed to address this issue
[1, 4, 12, 25, 43, 47, 57]. In tackling these challenges,
other solutions have explored the integration of depth points
obtained from external sensors (e.g. LiDAR) to enhance
depth estimation either by concatenating them as input of
CNN-based architectures [9, 10, 32, 46, 58] or by using
them to guide the cost aggregation of existing cost volumes
[19, 33, 46, 59]. In contrast, [2] augments the given stereo
pair to enhance RGB images, providing more discriminative
information to the network and making it easier to solve the
correspondence problem. Guided by the insights of this lat-
ter work in the stereo domain, we improve and extend the
paradigm to the depth completion task.

3. Virtual Pattern Projection for Depth Com-
pletion (VPP4DC)

This section describes our approach for robustly facing
depth completion, by deploying stereo matchers that pro-
cess purely hallucinated image pairs generated according to
the virtual pattern projection paradigm [2] – as if the scene
were framed by two fictitious cameras and a pattern projec-
tor hitting the scene in sparse regions. The intuition behind
this choice is to leverage the robustness of state-of-the-art
stereo matchers [24, 49] at locating features across frames
and domains to overcome the intrinsic limitations of con-
ventional completion frameworks.

2



Virtual
projection

Stereo
Matcher

Ir It

I

Dr D’r

Figure 2. Overview of the basic VPP4DC paradigm. On the left, the proposed stereo setup we designed on top of the standard depth
completion sensor suite enclosed in the green area. On the right, an outline of the proposed random projection that allows feeding a stereo
matcher with a fictitious virtual patterned stereo pair and, optionally, an RGB image to tackle depth completion.

3.1. Virtual Stereo Setup

Given the standard setup for depth completion enclosed in
the green area in Fig. 2 – consisting of a depth sensor (i) and
an optional RGB camera (ii) – our proposal casts the task
as a stereo correspondence problem using a virtual stereo
setup with two fictitious cameras, one in the same position
as the actual RGB device if present (ii), and the other (iii) at
a distance b, i.e. the virtual stereo baseline. While the focal
length f of the virtual cameras is constrained by the depth
sensor (i) or the RGB camera (ii), the virtual stereo baseline
b is a hyper-parameter.

We assume that the real RGB camera and the depth sen-
sor are calibrated and we set the origin of the reference sys-
tem in the camera. Therefore, we can project [38] sparse
depth points Z in the reference RGB camera view using
the camera matrix Kr and the roto-translation [Rr|Tr] be-
tween the depth sensor and the RGB camera:

Zr = Kr [Rr|Tr]Z (1)

where Zr is the sparse depth map projected into the refer-
ence image plane. The proximity of the depth sensor and
RGB camera can reduce occlusion issues [13] when pro-
jecting, although they cannot be entirely avoided – yet, can
be easily identified and filtered out [13].

Then, we place an additional target virtual camera shar-
ing the same intrinsics Kr of the other virtual device at a
horizontal distance to create a virtual baseline b. Although
we will stick to this setup, it is worth noting that the target
virtual camera is not constrained to the horizontal axis.

3.2. Virtual Pattern Projection

In the outlined setup, we aim to project onto the two ficti-
tious cameras appropriate virtual patterns coherent with the
3D structure of the scene framed by the depth sensor, as if
a projector were present in the setup [2]. At first, the sparse
depth points are converted to the disparity domain using the
parameters of the virtual stereo rig [38] as follows:

Dr =
b · f
Zr

(2)

where Zr is the sparse depth map aligned with the reference
image, b is the virtual baseline, and f is the focal length of
the virtual cameras (the same as the RGB camera). Dr is
the sparse disparity map aligned with the reference virtual
image Ir and the RGB image I .

Given our setup and the sparse depth points converted
into disparity values, we can project the same pattern onto
the fictitious reference Ir and target It cameras for each
point (x, y) with an available disparity value d(x, y) in the
reference image. It can be done by recalling [38] that with
a calibrated stereo system, the disparity d(x, y) links one
point Ir(x, y) in the reference image with the corresponding
It(x

′, y) point in the target, with x′ = x−d(x, y). Once the
two fictitious images have been generated, a stereo matcher
processes them and produces a disparity map, that is then
triangulated back into a densified depth map.

For projection: we manage real-valued disparities and
occlusions, respectively by i) applying weighted splatting in
the target image and ii) reprojecting the foreground pattern
on occluded regions, as in [2]. Independently of the pattern
choice, discussed next, the process outlined is feasible only
for a subset of the image points, and we set other points to
a constant color (e.g., black in all our experiments). There-
fore, from a different point of view, each fictitious camera
gathers sparse content coherent with the 3D structure of the
scene only where a fictitious virtual pattern projector sends
its rays. Regarding the virtually projected patterns, we out-
line the two following strategies.

RGB Projection. We project onto the two fictitious im-
ages the same content I(x, y) from the real camera, for each
pixel with an available disparity value:

Ir(x, y) ← I(x, y), It(x
′, y) ← I(x, y),

x′ = x− d(x, y)
(3)

Random Pattern Projection. Instead of warping the
image content, we project more matching-friendly patterns.
Following [2], we project coherently distinctive patterns
onto the two fictitious cameras:

Ir(x, y) ← P, It(x
′, y) ← P,

x′ = x− d(x, y)
(4)
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Figure 3. Adaptive random patches. The patch adapts to the
image content; we pick a random color for each projected point.
The figure shows only the fictitious patterned image Ir .

where operator P generates a random point-wise pattern ap-
plied coherently to both images. Fig. 2 shows the output of
this virtual projection strategy as an intermediate output of
the VPP4DC module.

On the one hand, compared to RGB Projection the ran-
dom patterns are inherently less ambiguous by construction,
for instance, in regions featuring a uniform texture. On the
other hand, the sparse patterning prevents a complete aware-
ness of the whole scene content for both strategies. How-
ever, such cue can be partially recovered from the RGB im-
age if the stereo matcher can exploit image context [24, 49].

3.3. Additional Virtual Projection Strategies

We extend the strategy outlined so far to i) increase pattern
density according to the RGB content and ii) handle issues
regarding the horizontal field of view in the stereo system.

3.3.1 Adaptive Patch-based Pattern Projection

The basic point-wise patterning strategy can be extended to
increase the pattern density, as proposed in [2], at nearby
points simply by assuming the same disparity value locally.
However, it can lead to the degradation of fine details as
they can be lost adopting this method. Purposely, we exploit
the RGB image I to overcome this issue since it contains
dense and meaningful cues about the scene. Specifically,
we propose a heuristic inspired by the bilateral filter [42] to
adapt the shape of the patch and handle overlapping patches.

Given a fixed size patch N (x, y) centered on an available
disparity point (x, y), for each nearby point (x+xw, y+yw)
within N (x, y), we estimate its consistency with the central
point as:

W(x+xw,y+yw) = e
−
�

(xw)2+(yw)2

2σ2
xy

+
(I(x+xw,y+yw)−I(x,y))2

2σ2
i

�

(5)
with σxy , σi hyper-parameters. Then, we project a random
value onto the two fictitious images only for those points
with a similarity score W(x+xw,y+yw) higher than a thresh-
old tadpt, a hyper-parameter of the method. Fig. 3 illustrates
how the shape of the patch adapts to image content. Ad-
ditionally, we update the upper threshold similarity scores
in a data structure of the image size initialized to zero for

Figure 4. Left padding on a fictitious patterned stereo pair. The
padding is visually highlighted using a teal color on Ir (left) and
It (right). It allows us to project out-of-image warped points in It.

each available sparse disparity point. Hence, we can project
the random pattern with the highest score for overlapping
patches.

3.3.2 Image Padding

As for any stereo setup, our made of two virtual cameras
inherits a well-known issue: the cameras do not frame a
completely overlapping portion of the scene. Specifically,
in our setup depicted in Fig. 2, the left border of the refer-
ence image will not be visible in the target image. However,
since we have complete control over image generation, we
can easily eliminate this issue by extending the field of view
of our fictitious cameras on the left side, by applying image
padding to account for the largest warped point out of the
image wout. Accordingly, we can project virtual patterns
that otherwise would pop out the left image border. Ul-
timately, the only trick needed is left cropping the output
dense disparity map. Fig. 4 shows how padding works.

4. Experiments
We now present our experimental evaluation, including im-
plementation details, datasets, and analysis of results.

4.1. Implementation Details

We implement RGB and Random pattern projection in
Python, both with padding and adaptive patches. The hyper-
parameters include σxy = 1, σi = 1, tadpt = 0.001
for adaptive patch. We conduct experiments with vari-
ous stereo matchers: RAFT-Stereo [24], IGEV-Stereo [49],
GMStereo [50], PSMNet [6], OpenCV’s SGM implementa-
tion [17, 29], and SDC [11]. We re-implemented SDC from
scratch due to the unavailability of the source code. Depth
refinement was omitted for a fairer comparison, although
it has been shown to have a low impact on final accuracy
[52]. Then, we compare VPP4DC in its best setting against
conventional completion frameworks: NLSPN [31], Com-
pletionFormer [60], and SpAgNet [14].

We will consider several cross-domain settings, either
from synthetic to real data or across real datasets. Pur-
posely, we will set the SceneFlow dataset [28] as the syn-
thetic training dataset: for stereo matchers, we use the
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Hyperparameters MAE (m)
Patch size Adaptive patch Left Padding NYU [30] KITTI DC [44]
1× 1 ✗ ✗ 0.090 0.412
1× 1 ✗ ✓ 0.094 0.408
3× 3 ✗ ✗ 0.086 0.418
3× 3 ✗ ✓ 0.083 0.414
3× 3 ✓ ✗ 0.086 0.411
3× 3 ✓ ✓ 0.086 0.406
5× 5 ✗ ✗ 0.084 0.431
5× 5 ✗ ✓ 0.079 0.427
5× 5 ✓ ✗ 0.084 0.412
5× 5 ✓ ✓ 0.080 0.409
7× 7 ✗ ✗ 0.083 0.485
7× 7 ✗ ✓ 0.078 0.480
7× 7 ✓ ✗ 0.084 0.434
7× 7 ✓ ✓ 0.080 0.432
9× 9 ✗ ✗ 0.085 0.561
9× 9 ✗ ✓ 0.078 0.556
9× 9 ✓ ✗ 0.082 0.486
9× 9 ✓ ✓ 0.078 0.486

Table 1. Hyper-parameters study. Results on NYU and KITTI
DC with a RAFT-Stereo model trained on synthetic data.

authors’ weights for IGEV-Stereo and GMStereo and re-
trained RAFT-Stereo and PSMNet following [2], while we
train from scratch completion frameworks by adapting their
recommended settings to this specific dataset. Concerning
generalization across real datasets, we perform either new
training from scratch or fine-tuning of the synthetic pre-
trained models. A detailed description of the training pro-
tocols, loss functions, and any hyper-parameter setting is
reported in the supplementary material.

4.2. Evaluation Datasets & Protocol

Four datasets are used in our experiments, comprising
scenes captured in both indoor and outdoor settings.

KITTI DC [44]. The KITTI depth completion dataset
depicts driving scenarios, captured at about 1280×384 pix-
els resolution with sparse ground-truth depth maps col-
lected using a LiDAR sensor. It provides 90K samples
with RGB images, aligned sparse depth information, and
semi-dense ground-truth data. We use the original train-
ing/validation splits, and each sample is top-cropped by
100px and then center-cropped to 1216× 240. Raw LiDAR
points are filtered according to distance from the minimum
[13] within a local 7× 7 patch in any experiment.

DDAD [16]. The DDAD dataset captures driving scenes
using multiple synchronized cameras, measuring depths up
to 250 meters. It includes about 12K training samples with
RGB images and ground-truth depth maps aligned with
each of the four cameras. The validation set comprises
3 950 samples and ground-truth depth maps for each cam-
era. We run experiments on validation samples from camera
1, where we sample about 20% depth points from ground-
truth – filtered as done for KITTI raw LiDAR [13] – and
evaluate at 1936×1216 resolution.

NYU Depth V2 [30]. The NYU Depth V2 dataset com-
prises 464 indoor scenes captured using a Kinect sensor.
Each sample was downsampled to 320 × 240 and center-

MAE(m)
RGB projection Synthesis Net [11] Random projection

Model NYU KITTI DC NYU KITTI DC NYU KITTI DC
OpenCV-SGM [17] 0.152 0.955 2.125 13.938 0.150 0.817
RAFT-Stereo [24] 0.096 0.463 1.211 7.937 0.080 0.409
IGEV-Stereo [49] 0.119 0.609 0.908 6.178 0.107 0.604
GMStereo [50] 0.251 0.756 0.914 4.913 0.264 0.881
PSMNet [6] 0.175 1.076 1.288 6.104 0.166 1.009
SDC [11] 0.134 0.678 0.293 0.830 0.132 0.613

Table 2. VPP4DC with off-the-shelf stereo networks. Results
on NYU and KITTI DC. Networks trained on SceneFlow [28].

cropped to 304×228. As for the previous datasets, we used
the original train/validation split for training and testing.

VOID [48]. The VOID dataset provides synchronized
color images at 640× 480 and sparse depth maps of indoor
and outdoor scenes. It includes about 1500 depth points
obtained via XIVO [15] together with dense ground-truth
depth sensed by an active stereo camera. Of the total 56
sequences, 8 are used for testing purposes defining three
benchmarks: VOID150 (150 points per frame), VOID500
(500 points), and VOID1500 (1500 points).

Evaluation Protocol. We assess the performance of all
methods using root mean square error (RMSE) and mean
absolute error (MAE). Specifically, we evaluate our com-
puted disparity maps converted into depth maps, for each
pixel with valid ground-truth depth values. In the remain-
der, we will highlight the best results in a given configura-
tion using bold font and indicate the absolute bests in red.

4.3. Ablation Study

We assess the impact of various design choices in VPP4DC,
by validating over 100 images sampled from each of the
KITTI DC, DDAD, NYU, and VOID training sets.

Hyper-Parameters. Tab. 1 collects the MAE achieved
on the NYU and KITTI DC datasets by varying different
hyper-parameters of the VPP4DC framework while main-
taining the stereo model unchanged – i.e., RAFT-Stereo
[24]. The virtual baseline is fixed at 0.15 and 0.54 for NYU
and KITTI DC respectively. We conduct experiments with
the virtual pattern at pixel level or patches – either without
or with the adaptive pattern – without or with left padding.
By applying padding to the pointwise pattern improves the
results on KITTI DC, but leads to a small drop in accuracy
on NYU. Switching to patchwise patterns yields consistent
improvements on NYU, mainly due to the much sparser sets
of depth points used on this benchmark compared to the raw
LiDAR scans used in KITTI. However, it has a negative im-
pact on KITTI, except when employing small – 3 × 3 or
5× 5 – adaptive patches. With patches, left padding is gen-
erally beneficial on both datasets. Based on this study, we
can conclude that using a 7×7 adaptive patch yields the best
results on NYU, while a 3× 3 adaptive patch is optimal for
KITTI DC, with padding being used for both. Therefore,
for the subsequent evaluations, we choose a configuration
yielding a good trade-off on both datasets – i.e., a 5 × 5
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Figure 5. Comparison of generated stereo pairs. From top to
bottom: stereo pairs by [11], RGB pattern projection and Random
pattern projection. For each, we report the output of RAFT-Stereo.
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Figure 6. Qualitative generalization analysis of synthesizer net-
work [11]. The network cannot handle high level details well.

adaptive patch with left padding, in orange in the table.
Stereo Models. In Tab. 2, we evaluate VPP4DC in com-

bination with various stereo matchers. The virtual baseline
is fixed at 0.15 and 0.54 for NYU and KITTI DC respec-
tively. At the very top, we report the results obtained using
the OpenCV SGM implementation [17] as a reference, fol-
lowed by recent stereo networks and SDC [11] trained on
the SceneFlow dataset [28]. On three different columns, we
apply different strategies for generating the stereo images
processed by the different methods: 5×5 RGB projection,
the use of an image synthesis model as proposed in [11],
and 5×5 Random projection. Starting from the left, we ob-
serve that PSMNet and GMStereo demonstrate lower accu-
racy compared to other networks and the SGM algorithm
itself. We ascribe the better accuracy achieved by RAFT-
Stereo and IGEV-Stereo to the use of a contextual network
within their architecture. However, SDC compensates the
lack of this latter by processing the sparse depth points as
a direct input to the network itself. By generating a dense
right image through the synthesis network and processing
it together with the real left image, the accuracy of any
method drops, with SDC being the best-performing model
under this setting. We attribute this outcome to the lack of
high-frequency details in the synthetically generated right

Figure 7. Virtual baseline analysis. VPP4DC performance with
different virtual baselines.

Network Test domain RMSE (m) MAE (m)
NLSPN [31] NYU [30] 0.716 0.440
SpAgNet [14] NYU [30] 0.292 0.158
CompletionFormer [60] NYU [30] 0.374 0.186
VPP4DC (ours) NYU [30] 0.247 0.077
NLSPN [31] VOID500 [48] 2.394 0.972
SpAgNet [14] VOID500 [48] 0.782 0.366
CompletionFormer [60] VOID500 [48] 2.617 1.290
VPP4DC (ours) VOID500 [48] 0.614 0.188
NLSPN [31] KITTI DC [44] 2.076 1.335
SpAgNet [14] KITTI DC [44] 1.788 0.518
CompletionFormer [60] KITTI DC [44] 1.935 0.952
VPP4DC (ours) KITTI DC [44] 1.609 0.413
NLSPN [31] DDAD [16] 11.612 3.498
SpAgNet [14] DDAD [16] 13.236 4.578
CompletionFormer [60] DDAD [16] 9.959 2.518
VPP4DC (ours) DDAD [16] 7.303 1.529

Table 3. Synthetic-to-real generalization. All networks are
trained on SceneFlow [28] and tested on real datasets.

view due to the very low density of the depth points used
to guide the synthesis process. Finally, using the random
pattern enables any model to achieve the lowest errors, with
RAFT-Stereo proving to be the architecture better suited to
exploit it. Thus, we use Random pattern projection coupled
with RAFT-Stereo in our framework for the remaining ex-
periments. We refer to it as VPP4DC.

Fig. 5 shows a qualitative example of the results ob-
tained by RAFT-Stereo using virtual stereo pairs generated
through the three approaches. Using the left and synthe-
sized right images yields poor results due to the lack of de-
tails in the generated view. We ascribe this behaviour to the
lack of generalization capabilities by the synthesis network:
Fig. 6 shows how images generated in the training domain
appear detailed, with their quality degrading when applied
to the KITTI DC dataset. On the contrary, Fig. 5 shows that
RGB projection produces qualitatively good results already,
with Random projection further facilitating the recovery of
fine structures in the final prediction.

Virtual Baseline. Fig. 7 plots how the virtual baseline
length impacts the accuracy of VPP4DC. For each base-
line b, we plot the relative accuracy as the minimum MAE
achieved across all the baselines over the MAE computed
with baseline b. In general, a tiny baseline dampens the res-
olution at farther distances, reducing accuracy in those re-
gions. In contrast, a wide baseline produces larger disparity
values, potentially falling outside the disparity distribution
observed during training by most stereo networks [28]. We
can observe similar trends across driving datasets, such as
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Train on KITTI DC [44] Train on NYU [30]
DDAD [16] VOID500 [48] DDAD [16] VOID500 [48]

Network RMSE (m) MAE (m) RMSE (m) MAE (m) RMSE (m) MAE (m) RMSE (m) MAE (m)
NLSPN [31] 11.646 4.621 5.627 4.196 20.180 6.882 0.802 0.381
SpAgNet [14] 18.247 9.130 1.153 0.485 36.728 21.732 0.752 0.326
CompletionFormer [60] 9.606 3.328 11.640 9.856 16.479 5.649 0.821 0.385
VPP4DC (ours) 10.247 2.290 0.934 0.356 9.246 3.001 0.840 0.307

(a)
Train on SceneFlow [28] + KITTI DC [44] Train on SceneFlow [28] + NYU [30]

DDAD [16] VOID500 [48] DDAD [16] VOID500 [48]
Network RMSE (m) MAE (m) RMSE (m) MAE (m) RMSE (m) MAE (m) RMSE (m) MAE (m)
NLSPN [31] 9.231 2.498 2.426 0.886 40.221 18.487 0.783 0.301
SpAgNet [14] 17.540 9.202 0.878 0.458 36.878 21.808 0.765 0.342
CompletionFormer [60] 9.471 3.607 3.418 2.294 35.590 18.928 0.929 0.429
VPP4DC (ours) 7.048 1.580 0.582 0.187 6.781 1.344 0.652 0.187

(b)
Table 4. Real-to-real generalization. Results in different train/test scenarios, without (a) and with (b) pre-training on SceneFlow [28].

Train on SceneFlow
VOID150 [48] VOID500 [48] VOID1500 [48]

Network RMSE (m) MAE (m) RMSE (m) MAE (m) RMSE (m) MAE (m)
NLSPN [31] 4.989 2.523 2.394 0.972 1.353 0.427
SpAgNet [14] 0.901 0.452 0.782 0.366 0.729 0.270
CompletionFormer [60] 4.131 2.369 2.617 1.290 1.684 0.642
VPP4DC (ours) 0.748 0.245 0.614 0.188 0.606 0.166

Table 5. Density generalization. Results in different train/test
scenarios, without (a) and with (b) pre-training on SceneFlow [28].

DDAD and KITTI DC, where the optimal baseline is 0.30
and 0.50m, respectively, with larger baselines yielding sim-
ilar results for KITTI – up to 0.80m – while increasing the
error on DDAD. We ascribe this to the different distribu-
tion of depth values observed in the two datasets, showing
a higher percentage of pixels at closer distances on DDAD.
On datasets featuring a much lower depth range, such as
NYU and VOID, the best results are achieved with shorter
baselines, specifically 0.15m and 0.10m, respectively. From
now on, we will use these optimal virtual baselines for the
corresponding datasets.

4.4. Synthetic-to-Real Generalization

We now assess the robustness of state-of-the-art depth com-
pletion architectures and our VPP4DC framework to harsh
domain shifts, starting from a synthetic-to-real transfer
setup. Specifically, we train VPP4DC and completion mod-
els [14, 31, 60] on the SceneFlow dataset and evaluate their
accuracy on the four real benchmarks – NYU, VOID500,
KITTI DC, and DDAD. Three are the main challenges for
these approaches: i) the highly diverse image content de-
picted in the various datasets, ii) the significantly different
distributions of sparse depth points, and iii) the varying im-
age resolutions, in particular on DDAD.

Tab. 3 collects the outcome of this experiment. NL-
SPN often suffers the most from the domain shift, fol-
lowed by CompletionFormer, partially compensating for it
thanks to its global receptive field. SpAgNet proves to be
highly robust by its design, specifically suited for handling
different input distributions. Nevertheless, it faces signif-
icant challenges in adapting to DDAD, indicating limita-
tions in handling high resolution. Finally, VPP4DC con-
sistently achieves the highest accuracy, making it the pre-
ferred option for addressing synthetic-to-real generalization
for depth completion.

4.5. Real-to-Real Generalization

The synthetic-to-real experiment already highlights the
potentially superior robustness of VPP4DC compared to
well-established completion frameworks across different
datasets. To confirm this, we conduct further experiments
by training each method on real datasets and evaluating
their accuracy in unseen, different environments. Purposely,
we choose NYU and KITTI DC as the training datasets,
as they have historically been the most commonly used
in the depth completion literature. We then test the mod-
els on VOID500 and DDAD, creating the KITTI-to-DDAD
and NYU-to-VOID500 benchmarks, where the training and
testing domains are quite similar. Additionally, we establish
the KITTI-to-VOID500 and NYU-to-DDAD ones, where
the domain shift is more severe. Tab. 4 summarizes the
results of this experiment, conducted under two settings.

On top (a), where the models are trained on either KITTI
DC or NYU only, we observe that NLSPN and Completion-
Former underperform when trained on datasets significantly
different from the testing domain, i.e., in the KITTI-to-
VOID500 setup or the NYU-to-DDAD. SpAgNet performs
the worst on DDAD while it shows considerable robustness
in the KITTI-to-DDAD setting and achieves the absolute
best RMSE on NYU-to-VOID500. VPP4DC demonstrates
strong generalization either when trained on KITTI DC or
NYUv2 solely, yielding the lowest error in most cases.

At the bottom (b), we repeat the same evaluation, this
time using models being pre-trained on SceneFlow – firstly,
we pre-train the models on SceneFlow, where the comple-
tion networks handle the completion task and VPP4DC fo-
cuses on stereo matching. Then, we fine-tune these pre-
trained models on either KITTI DC or NYU for evaluation.
Overall, pre-training appears to be beneficial for models that
are subsequently trained on KITTI DC, as it improves their
accuracy in most cases. Conversely, it has a negative impact
– negligible or not – when the models are eventually trained
on NYU, except for VPP4DC. Indeed, our method consis-
tently achieves the best results when empowered by stereo
pre-training – which is crucial for properly learning how to
match images, either real or generated through our pattern –
largely reducing RMSE and MAE on VOID500 especially.
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Train on KITTI DC [44] Train on NYU [30]
VOID150 [48] VOID500 [48] VOID1500 [48] VOID150 [48] VOID500 [48] VOID1500 [48]

Network RMSE (m) MAE (m) RMSE (m) MAE (m) RMSE (m) MAE (m) RMSE (m) MAE (m) RMSE (m) MAE (m) RMSE (m) MAE (m)
NLSPN [31] 6.587 4.933 5.627 4.196 4.784 3.591 0.963 0.492 0.802 0.381 0.737 0.298
SpAgNet [14] 1.240 0.533 1.154 0.485 1.108 0.446 0.866 0.408 0.752 0.326 0.706 0.244
CompletionFormer [60] 15.543 13.490 11.640 9.856 8.804 7.446 0.956 0.487 0.821 0.385 0.726 0.261
VPP4DC (ours) 1.118 0.507 0.934 0.356 0.789 0.244 0.960 0.397 0.840 0.307 0.800 0.253

(a)
Train on SceneFlow [28] + KITTI DC [44] Train on SceneFlow [28] + NYU [30]

VOID150 [48] VOID500 [48] VOID1500 [48] VOID150 [48] VOID500 [48] VOID1500 [48]
Network RMSE (m) MAE (m) RMSE (m) MAE (m) RMSE (m) MAE (m) RMSE (m) MAE (m) RMSE (m) MAE (m) RMSE (m) MAE (m)
NLSPN [31] 4.616 1.991 2.426 0.886 1.349 0.448 1.138 0.535 0.783 0.301 0.668 0.210
SpAgNet [14] 0.959 0.503 0.878 0.458 0.875 0.420 0.874 0.418 0.766 0.342 0.718 0.253
CompletionFormer [60] 5.396 3.736 3.418 2.294 2.446 1.608 1.162 0.628 0.929 0.429 0.800 0.287
VPP4DC (ours) 0.690 0.247 0.582 0.187 0.543 0.148 0.865 0.259 0.652 0.187 0.595 0.157

(b)
Table 6. Density generalization. Results in different train/test scenarios, without (a) and with (b) pre-training on SceneFlow [28].

NYU KITTI DC
Network RMSE (m) MAE (m) RMSE (m) MAE (m)
SCPU [22] 0.544 0.240 1.591 0.329
NLSPN [31] 0.092 0.035 0.772 0.197
SpAgNet [14] 0.114 0.045 0.856 0.222
CompletionFormer [60] 0.090 0.035 0.849 0.216
VPP4DC (ours) 0.117 0.044 0.999 0.269

(a)
NYU KITTI DC

Network RMSE (m) MAE (m) RMSE (m) MAE (m)
SCPU [22] 0.544 0.240 1.591 0.329
NLSPN [31] 0.123 0.051 1.129 0.353
SpAgNet [14] 0.104 0.043 0.832 0.216
CompletionFormer [60] 0.102 0.042 1.090 0.259
VPP4DC (ours) 0.119 0.048 1.095 0.304

(b)
Table 7. In-domain performance. Results without (a) and with
(b) pre-training on SceneFlow [28].

4.6. Density Generalization

We investigate model robustness to varying input depth
point densities across domains using the VOID150,
VOID500, and VOID1500 benchmarks.

Synthetic-to-Real. We start by evaluating networks
trained on the SceneFlow dataset [28]. Tab. 5 summarizes
the outcome of this experiment. Among the established
completion frameworks, SpAgNet demonstrates outstand-
ing robustness to the different densities, while NLSPN and
CompletionFormer suffer about 2× increase of RMSE and
MAE from VOID1500 to VOID500 and from this latter to
VOID150. Once again, VPP4DC surpasses all other mod-
els, affirming its robustness in this aspect too.

Real-to-Real. Next, we study the impact of density
when the networks have been trained on KITTI DC or NYU
datasets. Tab. 6 collects the results on the three VOID
benchmarks. On top (a), we report the results for the mod-
els trained directly on real data. SpAgNet confirms its
robustness to the varying input density. Moreover, when
trained on a similar domain, such as the one of the NYU
dataset, it often achieves the best results. It also outperforms
VPP4DC, which proves to be more effective when general-
izing from KITTI DC to VOID. At the bottom (b), we eval-
uate models pre-trained on SceneFlow. We observe how
this pre-training strategy improves the results when moving
from KITTI DC to VOID splits – i.e., very different do-

mains – while it has a negligible or negative impact when
moving from NYU to VOID – i.e., more similar ones. On
the contrary, VPP4DC consistently benefits from stereo pre-
training on SceneFlow, often halving the errors and emerg-
ing as the most robust framework to varying input density.

4.7. In-Domain Performance

We conclude by evaluating the accuracy achieved by
VPP4DC when training and testing on the same domains.
Tab. 7 reports the outcome of this final experiment on two
sub-tables. On top of both, we include the results achieved
by a hand-crafted completion solution [22] as a reference.

On top (a), each model is trained directly on the train-
ing set of the target dataset – NYU or KITTI DC. No-
tably, the well-established completion frameworks outper-
form VPP4DC concerning specialization within a single
domain. At the bottom (b), we show the performance ob-
tained by pre-training the networks on SceneFlow. Except
for SpAgNet, the pre-training impacts negatively on the ac-
curacy over the very same domain. Indeed, the absolute best
results are obtained by CompletionFormer and NLSPN, on
NYU and KITTI DC, respectively, when trained only on the
target domain training set.

Despite being slightly less effective at specializing in sin-
gle domains, VPP4DC still achieves competitive results, not
far from the state-of-the-art. Nonetheless, we believe this
small gap is a moderate price to pay for achieving much
stronger generalization across very different domains. This
makes VPP4DC better suited for in-the-wild deployment
and a first significant step towards studying depth comple-
tion solutions with such capabilities.

5. Conclusion
This paper proposed a novel paradigm to achieve depth
completion robust against the training environment. Com-
bining a state-of-the-art stereo network and our framework
achieves competitive results on the same domain evalua-
tion and greatly outperforms other task-specific networks
in cross-domain generalization. We believe this can pave
the way for deploying depth completion in countless and
exciting practical application contexts.
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